Subtotaal (1 eenheid)*
€ 95,99
(excl. BTW)
€ 116,15
(incl. BTW)
Voeg 1 eenheid toe voor gratis bezorging
Laatste voorraad RS
- 1 stuk(s) klaar voor verzending vanaf een andere locatie
- Plus verzending 12 stuk(s) vanaf 04 februari 2026
- Laatste verzending 10 stuk(s) vanaf 10 februari 2026
Aantal stuks | Per stuk |
|---|---|
| 1 + | € 95,99 |
*prijsindicatie
- RS-stocknr.:
- 139-3655
- Fabrikantnummer:
- NCSM2450.DK1
- Fabrikant:
- Intel
Specificaties
Datasheets
Wetgeving en compliance
Productomschrijving
Zoek vergelijkbare producten door een of meer kenmerken te selecteren.
Alles selecteren | Attribuut | Waarde |
|---|---|---|
| Merk | Intel | |
| Product Type | Development Kit | |
| Kit Classification | Development Board | |
| Processor Part Number | Myriad-2 | |
| Alles selecteren | ||
|---|---|---|
Merk Intel | ||
Product Type Development Kit | ||
Kit Classification Development Board | ||
Processor Part Number Myriad-2 | ||
Movidius Neural Compute Stick
The Neural Network Compute Stick from Movidius™ allows Deep Neural Network development without the need for expensive, power-hungry supercomputer hardware. Simply prototype and tune the Deep Neural Network with the 100Gflops of computing power provided by the Movidius stick. A Cloud connection is not required. The USB stick form-factor makes for easy connection to a host PC while the on-board Myriad-2 Vision Processing Unit (VPU) delivers the necessary computational performance. The Myriad-2 achieves high-efficiency parallel processing courtesy of its twelve Very Long Instruction Word (VLIW) processors. The decision on parallel scheduling is carried out at program compile time, relieving the processors of this chore at run-time.
Features
• Movidius 600MHz Myriad-2 SoC with 12 x 128-bit VLIW SHAVE vector processors;• 2MB of 400Gbps transfer-rate on-chip memory;• Supports FP16, FP32 and integer operations with 8-, 16- and 32-bit accuracy;• All data and power provided over a single USB 3.0 port on a host PC
• Real-time, on-device inference without Cloud connectivity
• Quickly deploy existing CNN models or uniquely trained networks;• Multiple Movidius Sticks can be networked to the host PC via a suitable hub;• Dimensions: 72.5 x 27 x 14mm
Compile
Automatically convert a trained Caffe-based Convolutional Neural Network (CNN) into an embedded neural network optimized for the on-board Myriad-2 VPU. The SDK also supports TensorFlow.
Tune
Layer-by-layer performance metrics for both industry-standard and custom-designed neural networks enable effective tuning for optimal real-world performance at ultra-low power. Validation scripts allow developers to compare the accuracy of the optimized model on the device to the original PC-based model.
Accelerate
The Movidius Stick can behave as a discrete neural network accelerator by adding dedicated deep learning inference capabilities to existing computing platforms for improved performance and power efficiency.
;Where can you use me?;• Smart home and consumer robotics
• Surveillance and security industry
• Retail industry
• Healthcare
Gerelateerde Links
- Intel Intel NUC 11 Compute Element BKCM11EBI38W
- STMicroelectronics Discovery Kit Development Board Development Board STM32WBA55G-DK1
- Intel RealSense™ Image Sensor Development Kit for SR300 Camera
- Intel RealSense™ Image Sensor Development Kit for R200 Camera
- STMicroelectronics Discovery kit with STM32MP157D MPU 32 bit Development Board STM32MP157D-DK1
- 6 belangrijke voordelen van Edge Computing
- STMicroelectronics STM32WBA65I-DK1 Discovery Kit Discovery Kit STM32WBA65I-DK1
- Italtronic Enclosure for Raspberry pi compute module, Grey
